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Root pressure–volume curve traits capture rootstock drought tolerance
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•  Background and Aims  Living root tissues significantly constrain plant water uptake under drought, but we 
lack functional traits to feasibly screen diverse plants for variation in the drought responses of these tissues. Water 
stress causes roots to lose volume and turgor, which are crucial to root structure, hydraulics and growth. Thus, we 
hypothesized that root pressure–volume (p–v) curve traits, which quantify the effects of water potential on bulk 
root turgor and volume, would capture differences in rootstock drought tolerance.
•  Methods  We used a greenhouse experiment to evaluate relationships between root p–v curve traits and gas ex-
change, whole-plant hydraulic conductance and biomass under drought for eight grapevine rootstocks that varied 
widely in drought performance in field trials (101-14, 110R, 420A, 5C, 140-Ru, 1103P, Ramsey and Riparia 
Gloire), grafted to the same scion variety (Vitis vinifera ‘Chardonnay’).
•  Key Results  The traits varied significantly across rootstocks, and droughted vines significantly reduced root 
turgor loss point (πtlp), osmotic potential at full hydration (πo) and capacitance (C), indicating that roots became 
less susceptible to turgor loss and volumetric shrinkage. Rootstocks that retained a greater root volume (i.e. a 
lower C) also maintained more gas exchange under drought. The rootstocks that previous field trials have classified 
as drought tolerant exhibited significantly lower πtlp, πo and C values in well-watered conditions, but significantly 
higher πo and πtlp values under water stress, than the varieties classified as drought sensitive.
•  Conclusions  These findings suggest that acclimation in root p–v curve traits improves gas exchange in persist-
ently dry conditions, potentially through impacts on root hydraulics or root to shoot chemical signalling. However, 
retaining turgor and volume in previously unstressed roots, as these roots deplete wet soil to moderately negative 
water potentials, could be more important to drought performance in the deep, highly heterogenous rooting zones 
which grapevines develop under field conditions.

Key words: Root hydraulics, pressure–volume, turgor loss point, capacitance, rootstock, grapevine, root drought 
tolerance, Vitis.

INTRODUCTION

Roots are a significant bottleneck for water transport in 
droughted plants. The root system and soil–root interface 
account for 50–70 % of plant hydraulic resistance in wet con-
ditions, and up to 90 % under water stress (Jensen et al., 1989; 
North and Nobel, 1995; Tsuda and Tyree, 1997; Rodriguez-
Dominguez and Brodribb, 2020). Radial water transport across 
the root cylinder is a larger contributor to root hydraulic re-
sistance than axial transport through the xylem (Steudle and 
Peterson, 1998), especially for water-stressed roots (Cuneo 
et al., 2016; Rodriguez-Dominguez et al., 2018). However, we 
lack traits to characterize drought responses in the root cylinder 
tissues that are feasible to measure across diverse plants, des-
pite the potential importance to whole-plant drought tolerance. 
Pressure–volume (p–v) curves define traits that characterize 
tissue drought responses from the impacts of water stress on 
bulk turgor and water volume (Cheung et  al., 1975). Tissues 
with stronger declines in turgor and volume are expected to 
undergo more structural damage and growth inhibition during 
drought (Hsiao et al., 1976). Leaf p–v curve traits are strongly 

correlated with hydraulic function under drought (Bartlett 
et al., 2016), but these traits are rarely measured for roots, and 
the root traits have never been evaluated for impacts on plant 
drought performance. Thus, we used eight grape rootstocks that 
vary widely in drought tolerance in field conditions to conduct a 
novel test of the relationships between the root p–v curve traits 
and vine gas exchange, plant hydraulic conductance and growth 
under water stress.

Pressure–volume curves are constructed by repeatedly 
measuring the water potential and volume for a dehydrating 
organ (Turner et al., 1987), and interpolated to define six traits: 
the turgor loss point (πtlp), osmotic potential at full hydration 
(πo), relative water content at the turgor loss point (RWCtlp), cap-
acitance (C), cell wall modulus of elasticity (ε) and apoplastic 
fraction (af) (Cheung et  al., 1975). Turgor, the pressure gen-
erated by water pushing outwards against cell walls, supports 
cell structure and drives cell expansion during growth (Hsiao 
et  al., 1976). πtlp measures the water potential (Ψ) at which 
turgor declines to zero. Roots with a more negative πtlp lose 
turgor at a more negative Ψ, and thus are expected to main-
tain structural integrity and growth under drier conditions. πtlp 
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is largely determined by πo, and roots with a more negative 
πo would exhibit a higher cell solute concentration and more 
negative πtlp (Bartlett et  al., 2012b). RWCtlp and C measure  
the effects of water stress on tissue water volume. RWCtlp is the 
percentage of saturated volume remaining at πtlp, and C is the 
slope of the relationship between volume and Ψ (Cheung et al., 
1975). Roots with a larger RWCtlp would retain more water at 
πtlp, while roots with a higher C would lose more water for a 
given decline in Ψ, with potentially detrimental effects on root 
structure (North and Nobel, 1997). We excluded ε and af, since 
calculating these traits requires distinguishing water loss from 
the symplast and apoplast, and roots typically lose water from 
both sources simultaneously (Kandiko et  al., 1980). Overall, 
we expect the rootstocks with a more negative πtlp and πo, lower 
C and higher RWCtlp to better maintain root structure and func-
tion under water stress.

Several mechanisms could relate root turgor and volume, and, 
consequently, the p–v curve traits, to whole-plant drought per-
formance. First, losing water from the cells causes dehydrating 
roots to shrink, physically decoupling the roots from the soil, 
and upregulates abscisic acid (ABA) production (Zhang and 
Tardieu, 1996; North and Nobel, 1997). Shrinkage in the root 
maturation zone, the band of root tissue chiefly responsible for 
water uptake, reduces hydraulic conductance at the soil–root 
interface (Carminati et al., 2009; Gambetta et al., 2013). Further, 
ABA export from the roots has been hypothesized to trigger sto-
matal closure (Speirs et al., 2013), though work in other species 
suggests that the stomata mainly respond to leaf ABA produc-
tion (McAdam et al., 2016). Both mechanisms suggest that root-
stocks that retain more root volume, with a higher RWCtlp and 
lower C, would maintain greater whole-plant hydraulic conduct-
ance and gas exchange under water stress. Second, water stress 
triggers the destruction of individual cells (cell implosion) in 
the maturation zone of grape roots. During implosion, the cell 
walls and membranes rupture, leaving air-filled lacunae in the 
root tissue that reduce conductivity by eliminating pathways 
for water movement (Cuneo et  al., 2016, 2021). Cell implo-
sion could release water from the root tissue, and thus a higher 
RWCtlp and lower C could indicate roots with less lacunae for-
mation and smaller declines in conductivity. Further, the drivers 
of cell implosion are largely unknown, but turgor loss and wall 
collapse could be precipitating events, suggesting that a more 
negative πtlp and πo could indicate that roots undergo lacunae 
formation at more negative water potentials. Finally, the root-
stocks classified as drought tolerant by field trials exhibit more 
root growth than drought-sensitive varieties (Bauerle et  al., 
2008a), and a more negative root πo has been shown to improve 
turgor and growth under water stress (Frensch and Hsiao 1994).

The widespread occurrence of osmotic adjustment suggests 
that plasticity in these traits is also important to drought toler-
ance. During drought, many grasses, herbs and woody plants, 
including grapevines, accumulate solutes (osmotically adjust) 
to make root πo, and thus πtlp, more negative, allowing roots 
to maintain greater turgor and growth (Düring, 1984; Westgate 
and Boyer, 1985; Turner et al., 1987; Frensch and Hsiao, 1994; 
Knipfer et al., 2020). Two desert succulent species were also 
shown to decrease root C under water stress (Jordan and Nobel, 
1984). Here we tested, for the first time, whether plasticity in 
these traits predicts rootstock differences in gas exchange and 
whole-plant hydraulic conductance during drought.

Finally, we tested whether these traits predict rootstock dif-
ferences in field drought tolerance. We evaluated differences 
between drought-tolerant (110R, 1103P, Ramsey and 140-Ru) 
and drought-sensitive (101-14, 420A, 5C and Riparia Gloire) 
rootstocks, grafted onto the same scion variety (Chardonnay) to 
reduce variation in above-ground traits. The varieties classified 
as tolerant maintained greater canopy growth in low-irrigation 
field trials (Dodson Peterson et  al., 2019). Grapevines are 
deeply rooted (approx. 2 m), and typically experience wet con-
ditions in deeper soil and dry conditions at the surface at the 
same time, suggesting that trait values from wet and dry con-
ditions are both potentially important to field drought perform-
ance (Smart et al., 2006; Bauerle et al., 2008a; Alsina et al., 
2011). Overall, we expect this work to provide new insight into 
the impacts of drought responses in the living root tissues, cap-
tured by the root p–v curve traits, on whole-plant drought toler-
ance. These findings would also be the first to evaluate whether 
selecting for these traits is a promising strategy to improve root-
stock drought tolerance.

MATERIALS AND METHODS

Plant material and growth conditions

Four drought-tolerant (110R, 1103P, 140-Ru and Ramsey) and 
four drought-sensitive grape rootstock varieties (5C, 420A, 
Riparia Gloire and 101-14) were grafted onto Chardonnay 
scions, using disease-free plant material supplied by the 
University of California, Davis Foundation Plant Services 
(Bettiga, 2003). Twenty plants per variety (n = 160 total) were 
planted in 1.7 gallon pots on 18 June 2019, in a 3:1 coconut 
coir to perlite mix. Plants were grown in a greenhouse on the 
UC Davis campus over a 3 month establishment period (June 
to September) and a 3 month experimental period (September 
to December). During the establishment period, the vines 
were pruned to a single shoot, which was staked and tied after 
reaching 0.5 m in length. The new growth was tied monthly. 
Pots were watered with a nutrient infusion once every 2 weeks 
(see Knipfer et al., 2015 for nutrient composition), and other-
wise with deionized water.

Watering treatments and whole-plant transpiration

The pots were weighed and re-watered three times per week 
to a target weight (Supplementary data Fig. S1). During the 
establishment period, the target weight was equal to 95 % of 
the saturated pot weight plus half of pot evapotranspiration, to 
produce a mean pot water content between waterings that is 
approximately equal to 95 % of saturated pot weight (Pita and 
Pardos, 2001). Saturated weight was determined for each pot 
by adding water until drainage was visible and weighing the pot 
once water had been lost to the point that drainage had stopped. 
Plant evapotranspiration (Etot) was calculated as the change in 
pot weights (Supplementary data Fig. S2). Pot saturated weight 
and evapotranspiration were measured at the start of the estab-
lishment and experimental periods.

Half of the vines were randomly assigned to each of two 
watering treatments on 9 September. The well-watered vines 
continued to receive the same watering regime, while the 
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water-stressed vines were re-watered to 40 % of saturated 
pot mass, plus half of pot evapotranspiration under the new 
watering regime. Water was withheld from these vines until 
the pots reached 40 % of saturated mass, and the new evapo-
transpiration values were calculated from the difference in pot 
weights.

All plants were rehydrated overnight at the end of the experi-
mental period (8 December). Most of the plants were then de-
structively harvested for biomass (see below), but three plants 
per rootstock × treatment combination were weighed again to 
test the effects of the root p–v curve traits on the recovery in 
transpiration rates after drought.

Root pressure–volume curves

Two to four vines per rootstock × treatment combination were 
destructively harvested to construct p–v curves for two to three 
roots per vine (n = 108 curves) (Fig. 1; Supplementary data Fig. 
S3). Water-stressed vines were measured after 20 September, 
when the pots reached the new target weights. Plants were rehy-
drated by watering until drainage was visible, then placing the 
vine and pot in a humidified bag overnight. The root systems 
were then rinsed. Individual roots were wiped dry and excised 
15–20  cm above the root tip with a razor blade. Roots were 
stored in double bags, which were humidified by placing wet 
paper towel in the outer bag, in a refrigerator for up to 72 h. We 
confirmed that the roots did not dehydrate (i.e. initial water po-
tentials remained above –0.1 MPa) or discolour during storage. 
The outer bag was removed during measurements to prevent 
evaporation from the paper towel from affecting the mass 
values. To construct the curves, each root was removed from 
the bag to dehydrate between repeated measurements of root 
mass and water potential (Ψ), following the methods in Sack 
and Pasquet-Kok (2011). After dehydrating, we closed the root 
in the bag for 10 min to allow Ψ to equilibrate, and weighed 
the bagged root. Root water potential was then measured with 
a pressure chamber (PMS model 1505D) by monitoring the cut 
root surface through a dissecting scope, as the chamber was 

slowly pressurized (approx. 0.05 MPa s–1) until water emerged. 
The cut end was threaded through a rubber stopper with a 
narrow opening (3 mm in diameter) to create a tight seal, using 
a cork borer when needed to avoid damaging the root. The rest 
of the root was placed in the bag to prevent drying during the 
pressure chamber measurements. These measurements were re-
peated 6–10 times per root at approx. 0.1–0.3 MPa intervals. 
The roots were then oven-dried at 70 °C for 72 h, and the dry 
weights were used to calculate relative water content (RWC), 
the ratio of fresh to saturated water mass.

The p–v curve traits were interpolated from these relation-
ships following standard methods (Sack and Pasquet-Kok, 
2011). The turgor loss point (πtlp) and relative water content 
at turgor loss point (RWCtlp) were defined graphically, as the 
water potential and relative water content at which the relation-
ship between RWC and –1/Ψ transitioned from curvilinear to 
linear. The linear relationship between RWC and –1/Ψ was 
extrapolated to RWC = 1 to calculate the osmotic potential at 
full hydration (πo). Capacitance was defined as the slope of the 
relationship between RWC and Ψ. We calculated capacitance 
separately for water potentials above and below πtlp (i.e. Cft 
and Ctlp), since turgor pressure generally decreases capacitance 
by supporting the cell walls and providing resistance against 
changes in cell volume.

Gas exchange, water status and whole-plant hydraulic 
conductance

Three vines per rootstock × treatment combination (n = 48) 
were assessed for gas exchange and water stress, measured 
as midday leaf water potentials (Ψmd), every 2–3 weeks (see 
Supplementary data Figs S4–S6 for a timeline of these meas-
urements). The gas exchange measurements were taken on two 
consecutive days to capture variation in the period between 
waterings. These variables were measured at the hottest and thus 
most water-stressed time of the day in the greenhouse, between 
13.00 and 15.00 h. One sunlit, fully expanded leaf per vine was 
marked and repeatedly measured for stomatal conductance (gs) 
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Fig. 1.  Root pressure–volume curve examples from two of the most distinct rootstock varieties, 420A (A) and 110R (B). RWC is root relative water content and 
Ψ is root water potential. Blue points and lines show well-watered plants, and black points and lines show water-stressed plants. Horizontal lines indicate the 
mean turgor loss point (πtlp, y = –1/πtlp) and vertical lines indicate the mean relative water content at πtlp (RWCtlp, x = 100 – RWCtlp). n = 6–7 roots per rootstock/
treatment combination. 420A exhibited a less negative πtlp than 110R under well-watered conditions but adjusted to a more negative πtlp under water stress, while 
RWCtlp was similar between treatments and rootstocks. Field trials have classified 420A as drought sensitive and 110R as tolerant (Dodson Peterson et al., 2019). 

See Supplementary data Fig. S3 for curves from all eight rootstocks.
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and photosynthesis (Anet) with a LI-COR 6800 photosynthesis 
system (Supplementary data Figs S4 and S5). The LI-COR was 
set at a constant fan speed (10 000 rpm), chamber vapour pres-
sure deficit (1.5 kPa), CO2 concentration (400 ppm) and light 
intensity (1000 µmol m–2 s–1). The leaf temperature ranged from 
26.5 to 27.5 °C.

To measure Ψmd, one leaf per vine was excised with a razor 
blade from a similar canopy position to the gas exchange leaves 
(Supplementary data Fig. S6). The leaves were stored in hu-
midified double bags in a refrigerator for up to 24 h, then meas-
ured for water potential with the pressure chamber. On two of 
the sampling dates, 4 and 12 November, leaves were collected 
from the same vines between 04.00 and 06.00 h to measure pre-
dawn water potential (Ψpd), which we assumed to represent the 
water potential of the rooting zone.

To test the effects of the root p–v curve traits on plant hy-
draulics, we used the water potential gradient and evapotrans-
piration to calculate the whole-plant hydraulic conductance as 
Kplant =

Etot
Ψ pd −Ψmd

. To distinguish the effects of root hydraulic 
resistance and root system size, we also calculated KRA, or 
Kplant normalized by root system area. We measured these vari-
ables close to the date of the biomass harvest (9 December, see 
below) to accurately capture root area.

We also used Ψpd to calculate two drought response vari-
ables incorporating differences in below-ground water stress 
across the individual plants. We calculated a root hydraulic 
safety margin (HSM = Ψpd – πtlp) from the Ψpd measured for 
each plant and the mean πtlp for each rootstock × treatment 
combination (n  =  48). A  larger positive HSM indicates the 
plants maintain greater turgor, with a larger safety margin be-
tween the below-ground water potential and the threshold for 
turgor loss. We calculated a percentage volumetric water loss 
(WL) from the Ψpd measured for each plant and the mean root 
capacitance values

WL =

®
CftΨPD ΨPD > πtlp

Cftπtlp + Ctlp (πtlp −ΨPD) ΨPD ≤ πtlp
� (1)

where a larger WL indicates greater root water loss. We com-
pared relationships with gas exchange for these variables and 
the p–v traits, to evaluate whether differences in plant water 
stress within the experiment were important to whole-plant 
drought responses.

Canopy and root system size

We measured the canopy surface area for all plants at the 
end of the experimental period (9 December). The plants were 
photographed with an imaging platform designed by T. Knipfer, 
consisting of a PVC frame that holds a camera at a standard dis-
tance and angle from each pot. The plants were photographed 
from the front and side, then we used the thresholding func-
tion in the ImageJ software to isolate and quantify the canopy 
area for each photograph (Schneider et al., 2012). We calcu-
lated the mean canopy area for each plant from the front and 
side photographs. Notably, this method does not distinguish 
between overlapping leaves, and thus measures surface and not 
total leaf area.

We also destructively harvested the plants that were not 
monitored for gas exchange to measure above- and below-
ground biomass on the same day (n = 76). The plants were cut 
at the soil surface and the root systems were rinsed. Three roots 
per rootstock × treatment combination were excised at the stem, 
photographed, and measured for area with ImageJ. These roots 
were then oven-dried at 70 °C for 3 d and weighed to calculate 
root mass per unit area. The scions and rest of the root systems 
were also oven-dried at 70 °C for 4 weeks and weighed. The 
individual root masses were added to the rest of the root system 
biomass for each plant. The root biomasses and mass per area 
values were used to estimate the total root area for each plant.

The plants measured for gas exchange were rewatered to 
100 % of saturated pot weight on 9 December to monitor re-
covery in transpiration, then destructively harvested following 
the same methods on 16 December (n = 48). The biomass data 
from the two sampling dates were statistically indistinguish-
able, and so were pooled for the following analyses (n = 124).

Analyses

We first tested whether the root p–v curve traits and their 
responses to water stress were significantly different among 
the rootstock varieties. We fit each trait with the linear mixed-
effects model y ~ Treatment × Variety using the nlme package in 
R (v. 3.6.2). We modelled the watering treatment and rootstock 
variety as fixed effects and the individual plant as a random 
effect. We evaluated the support for each fixed effect as a pre-
dictor by conducting an AICc comparison among models with 
all possible combinations of the fixed-effect variables, using the 
‘dredge’ function in the package MuMIN (Barton, 2009). AICc 
values are Aikake information criterion corrected for small 
sample sizes (Burnham and Anderson, 2010). We defined the 
best-fit model as the model with the minimum AICc value or, 
where applicable, the most parsimonious sub-set of this model 
with an AICc value within 2 units of the minimum (Burnham 
and Anderson, 2010). We determined goodness-of-fit for the 
best-fit model by calculating the proportion of variation ex-
plained by the entire model (conditional r2) and the fixed effects 
alone (marginal r2) (Nakagawa and Schielzeth, 2013).

We then tested the impact of the root p–v curve traits on gas 
exchange (gs, Anet and Etot), water status (Ψmd) and whole-plant hy-
draulic conductance (Kplant and KRA) by fitting these variables with 
the linear mixed-effects model y ~ Treatment × Time × Trait. We 
only included the gas exchange and Ψmd data from 20 September 
to 8 December to allow the water-stressed plants time to adjust 
trait values to the new conditions (Düring, 1984). We modelled the 
watering treatment, number of days after the start of the experi-
mental period (Time), either a trait variable or the rootstock variety 
(Trait), and their interaction terms as fixed effects. We included 
the individual plant as a random effect. We first used AICc com-
parisons to identify the best-fit model for each trait variable, then 
ranked these models to compare predictive ability across traits.

Since the gas exchange and Ψmd measurements were re-
peated over time, we also tested for temporal autocorrelation 
in these data. We repeated the AICc comparisons for the same 
models while also including a first-order autoregressive correl-
ation structure, using the ‘corCAR0031’ function in nlme. AICc 
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comparisons between the models with and without this correl-
ation structure only supported including autocorrelation in the 
best-fit model for Etot. We also used this model to test whether 
rootstock differences in gas exchange reflect differences in both 
traits and the degree of water stress, by including the percentage 
root water loss (WL) and hydraulic safety margin (HSM) as Trait 
predictors.

We used the same methods to test for an effect of the root 
traits on hydraulic recovery from drought by fitting the model 
Etot, recovery ~ Etot, pre-recovery × Treatment × Trait, where Etot, pre-recovery 
and Etot, recovery are the evapotranspiration rates measured imme-
diately before and after rehydration (i.e. on 7 and 9 December). 
We also tested for an effect of the root traits on plant size by 
fitting the model y ~ Treatment × Trait to the above- and below-
ground biomass and area.

Finally, we evaluated trait variation between drought-tolerant 
and -sensitive rootstocks varieties by testing the two-way ana-
lysis of variance (ANOVA) y ~ Treatment × Drought Tolerance 
Category for each trait variable. We defined the varieties with 
low to medium tolerance in field trials as drought sensitive (i.e. 
420A, 5C, Riparia Gloire and 101-14) and the varieties with 
medium/high to high tolerance as drought tolerant (i.e. 110R, 
1103P, 140Ru and Ramsey) (Bettiga, 2003).

RESULTS

Root p–v curve traits varied across rootstocks and adjusted in 
response to water stress

All of the root p–v curve traits except RWCtlp varied across the 
eight rootstocks (Table 1; Figs 1 and 2; Supplementary data Fig. 
S3). Three traits, πtlp, πo and Cft, also adjusted to lower values 
under water stress, and the magnitude of this adjustment varied 
across the rootstocks (Table 1; Figs 1 and 2; Supplementary data 
Fig. S3). These trends were inferred from AICc comparisons, 
which identified rootstock variety, watering treatment and the 
interaction of rootstock × treatment as best-fit predictors for πtlp, 
πo and Cft, but only rootstock variety as a best-fit predictor for Ctlp, 
and neither variable as a best-fit predictor for RWCtlp (Table 1). 
These findings suggest that grape rootstocks vary strongly in the 
ability to retain bulk tissue turgor and volume in water-stressed 

roots, and that both constitutive trait variation and plasticity are 
important to rootstock differences in drought tolerance.

Root p–v curve traits were related to gas exchange under 
water stress

Root p–v curve traits were correlated with midday stomatal 
conductance (gs), photosynthesis (Anet) and daily whole-plant 
transpiration (Etot) under water stress (Table 2; Figs 3–5). The 
AICc comparisons identified the watering treatment, time 
during the experimental period and root capacitance traits as 
best-fit predictors for gs and Anet (Table 2). Water stress reduced 
gs and Anet, and both variables declined over the course of the 
experiment as the leaves aged (Figs 3 and 4; Supplementary 
data Figs S4 and S5). The rootstocks with a lower capacitance, 
measured at water potentials above and below the turgor loss 
point (Cft and Ctlp), maintained a higher gs under water stress 
(Fig. 3D, E). These relationships were strongest in the water-
stressed treatment, while Ctlp had no impact, and Cft had the op-
posite effect, on gs in well-watered conditions. A lower Cft was 
also associated with a higher Anet, as for gs, and this relationship 
was also stronger under water-stressed conditions (Fig. 4D). 
These findings suggest that maintaining root volume benefits 
gas exchange and water uptake from the soil under water stress.

Whole-plant transpiration (Etot) also declined under 
water stress and over the course of the experiment (Fig. 5; 
Supplementary data Fig. S2) but showed different relationships 
with the root p–v curve traits (Fig. 5). Etot was higher for the root-
stocks with a lower Ctlp and more negative πtlp, but these traits 
had greater impacts on transpiration under well-watered condi-
tions, while rootstocks converged on similar transpiration rates 
under water stress (Table 2; Fig. 5A, E). These findings appear 
to reflect trends in canopy size. Etot was significantly correlated 
with both gs and canopy surface area (r2 = 0.80, P < 0.001), 
but more strongly with canopy area (partial r2 = 0.26 and 0.81, 
respectively). The rootstocks produced similar canopy areas 
within each watering treatment, with especially little variation 
under water stress (Fig. 6B). Thus, despite differences in gs, the 
water-stressed rootstocks converged on a similar mean Etot, ran-
ging from 0.09 to 0.10 kg d–1, compared with 0.16 to 0.27 kg d–1 
for the well-watered plants (Fig. 5).

Table 1.  Best-fit models predicting the root pressure–volume curve traits turgor loss point (πtlp), osmotic potential at full hydration (πo), 
relative water content at turgor loss point (RWCtlp), capacitance from full hydration to turgor loss point (Cft) and capacitance at water 

potentials below turgor loss point (Ctlp)

πtlp (MPa) πo (MPa) RWCtlp (%) Cft (% MPa–1) Ctlp (% MPa–1)

Intercept –0.42 –1.01 74.6 0.52 0.66
Rootstock * *  * *
Treatment –0.56 –0.14  –0.15  
Treatment × Rootstock * *  *  
Marginal r2 0.68 0.64 0 0.56 0.23
Conditional r2 0.70 0.65 0.15 0.59 0.24

We used AICc comparisons to identify the best-fit model for each trait from all possible sub-sets of the full model including watering treatment, rootstock var-
iety and the interaction between treatment and variety as fixed effect predictors (n = 6–10 roots per rootstock × treatment combination). The individual plant was 
included as a random effect. The fitted parameter values are shown for the predictors included in the best-fit model. For brevity, best-fit predictors with multiple 
categories (i.e. rootstock variety) are indicated with an asterisk. Marginal r2 indicates the proportion of variance explained by the fixed effects, and conditional r2 
indicates the variance explained by both fixed and random effects.
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The root p–v curve traits were also related to the increase in 
canopy transpiration after rehydrating pots to 100 % of satur-
ated weight, compared with 40 and 95 % in the experimental 

treatments (Supplementary data Table S1, Fig. S7). Plants 
with a higher transpiration rate in the 2 d before re-watering  
(Epre-recovery) also exhibited greater transpiration after re-watering 

Table 2.  The best-fit models predicting gas exchange, including midday stomatal conductance (gs) and photosynthesis (Anet) and daily 
whole-plant transpiration (Etot), from the root pressure–volume curve traits

Trait a b c d e f Mar. r2 Cond. r2 ΔAICc

gs Cft 146 115 85 * * –540 0.45 0.73 –6.3
 WL 176 102 57 * * –642 0.41 0.73 –3.9
 Ctlp 228 2.9 –53 * * –146 0.41 0.73 –2.4
Anet Cft 6.5 0.6 7.2 * * –27 0.31 0.73 –3.9
 WL 6.5 1.8 3.0 * * –32 0.30 0.73 –3.4
Etot Variety 0.43 * –0.28 –0.003 0.002 * 0.63 0.85 –7.4
 Ctlp 0.44 –0.03 –0.29 –0.003 0.002  0.61 0.85 –4.8
 πtlp 0.39 –0.09 –0.36 –0.003 0.002 0.08 0.61 0.85 –3.4
 HSM 0.41 0.13 –0.29 –0.003 0.002 –0.08 0.61 0.85 –3.1

We used AICc comparisons to identify the best-fit model for each trait from all possible sub-sets of the model a + b × Trait + c × Treatment + d × Time + e × 
Treatment × Time + f × Treatment × Trait. Here, we show the fitted parameters from the best-fit model for every trait that improved predictions for gas exchange, 
as defined by ΔAICc. ΔAICc is the difference in AICc values between the best-fit model for each trait and the best-fit model without trait predictors. The traits 
with a ΔAICc < –2 were considered to substantively improve predictions for gas exchange. For brevity, the best-fit predictors with multiple categories (e.g. root-
stock variety) are indicated with asterisks. Time was represented as a continuous variable for Etot and a categorical variable for gs and Anet, since these variables 
were sampled less frequently.

0

0.5

1.0

1.5

0

0.5

1.0

1.5

80

60

40

20

0

WW

WS

0
A

C

E

B

D

42
0A

5C RG 10
1–

14

Ram14
0R

u

11
03

P

11
0R

42
0A

5C RG
10

1–
14

Ram
14

0R
u

11
03

P

11
0R

42
0A 5C RG

10
1–

14
Ram

14
0R

u

11
03

P
11

0R

42
0A 5C RG

10
1–

14

Ram

14
0R

u

11
03

P
11

0R

42
0A 5C RG

10
1–

14
Ram

14
0R

u

11
03

P
11

0R

–0.2

–0.4

–0.6

π t
lp

 (
M

P
a)

–0.8

0

–0.2

–0.4

–0.6

–0.8–1.0

–1.2

π 0
 (

M
P

a)
C

tlp
 (%

 M
P

a–
1 )

C
ft 

(%
 M

P
a–

1 )
R

W
C

tlp
 (%

)

Fig. 2.  Mean root turgor loss point (πtlp) (A), osmotic potential at full hydration (πo) (B), capacitance between full hydration and turgor loss point (Cft) (C), cap-
acitance for water potentials below turgor loss point (Ctlp) (D) and relative water content at turgor loss point (RWCtlp) (E) for each of the 16 rootstock variety × 
watering treatment combinations. Blue bars indicate well-watered and grey bars indicate water-stressed conditions. Error bars are standard errors (n = 5–11). All 
of the root pressure–volume curve traits except RWCtlp varied across the rootstocks, and all traits except RWCtlp and Ctlp were significantly reduced in the water-

stressed plants (Table 1).
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(Erecovery). However, Erecovery was still lower for water-stressed 
plants, even when controlling for Epre-recovery. A higher Ctlp and 
RWCtlp were associated with a higher transpiration rate when 
controlling for Epre-recovery. However, these relationships ap-
pear to be driven by a high capacity for the unstressed plants 
from one variety (Riparia) to upregulate transpiration after 
watering, rather than a general trend for rootstocks with higher 
Ctlp and RWCtlp to exhibit greater recovery from water stress 
(Supplementary data Fig. S7).

Root p–v curve traits were not related to plant water stress or 
hydraulic conductance

Contrary to expectation, the root p–v curve traits were not 
correlated with water stress or hydraulic conductance. The 
drought treatment reduced pre-dawn and midday leaf water 
potentials (Ψpd and Ψmd), whole-plant hydraulic conductance 
(Kplant) and Kplant normalized by root area (KRA) (Supplementary 

data Table S2; Fig. 7). Mean rootstock values for Ψpd and Ψmd 
ranged from –0.22 to –0.37 MPa and –0.61 to –0.77 MPa in 
the well-watered treatment, and from –0.34 to –0.45 MPa and 
–0.74 to –0.95  MPa in the water-stressed treatment, respect-
ively. The watering treatments were intended to impose the 
same level of stress on each variety and, consistent with this 
expectation, Ψpd and Ψmd were not correlated with the root 
traits or different across rootstock varieties. Although not ex-
pected, Kplant was also not related to the root traits or different 
across varieties. KRA varied significantly across rootstocks, but 
this trend appears to be driven by rootstock differences in root 
area, rather than hydraulic conductance (Supplementary data 
Table S2).

Both the p–v curve traits and the level of water stress in the 
rooting zone would impact root turgor and volume. Thus, we 
tested whether variables accounting for both traits and water 
stress, the hydraulic safety margin between Ψpd and πtlp (HSM) 
and the percentage water loss at Ψpd (WL), were more strongly 
related to gas exchange than to the traits alone. These variables 
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Fig. 3.  Relationships between the root pressure–volume curve traits and mean midday stomatal conductance (gs) over the experimental period. Blue points indi-
cate well-watered trait values and black points are water-stressed values. Field trials classified the rootstocks as drought tolerant and drought sensitive (Dodson 
Peterson et al., 2019). Error bars are standard errors. n = 5–11 roots for the p–v curve traits; n = 3 plants for gs. gs was reduced by water stress and varied over time 
during the experiment (Supplementary data Fig. S3). AICc comparisons identified root capacitance, both above and below the turgor loss point (Cft and Ctlp), as 
well-supported predictors for gs (shown as solid lines) (Table 2). A lower Cft and Ctlp, which indicate that the roots retain a greater water volume for a given decline 
in water potential, were associated with a higher gs under water stress, but had little or the opposite impact on gs under well-watered conditions (D and E) (Table 2).
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showed the same relationships as the traits, with minimal dif-
ferences in the marginal r2 between best-fit models (i.e. <0.04), 
consistent with the lack of strong differences in Ψpd (Table 2).

Root p–v curve traits were related to the size of the root system, 
but not the canopy

Water stress reduced both below- and above-ground growth, 
but the root p–v curve traits were only related to root system 
size (Table 3; Fig. 6). A larger root system biomass was associ-
ated with a lower RWCtlp, while all of the root p–v curve traits 
were identified as predictors for root system area. A larger area 
was associated with a lower RWCtlp and, as hypothesized, a 
more negative πtlp and πo and a lower Cft and Ctlp (Table 3; Fig. 
6A). However, root biomass and area were more strongly re-
lated to rootstock variety than to the individual traits (Table 3), 
suggesting that below-ground growth was determined by other 
rootstock factors. Water stress also reduced the canopy surface 
area and biomass, but the canopy size was not related to the root 
traits or rootstock variety (Table 3, Fig. 6B).

Root p–v curve traits measured for well-watered plants captured 
differences in rootstock drought tolerance under field conditions 

Most of the root p–v curve traits were significantly different 
between the rootstocks classified as drought tolerant (140-Ru, 
1103P, 110R and Ramsey) and drought sensitive (101-14, 420A, 
5C and Riparia Gloire) by previous field trials. The drought-
tolerant varieties exhibited significantly lower values for πtlp, 
πo, Cft and Ctlp, but only for trait values measured under well-
watered conditions, contrary to our expectations (ANOVA, 
P  <  0.001) (Fig. 8). The Cft and Ctlp values measured under 
water stress were not significantly different between drought-
tolerant and drought-sensitive varieties (P > 0.3), while the π tlp 
and πo values were significantly less negative in the drought-
tolerant varieties (P < 0.01) (Fig. 8).

DISCUSSION

This study is novel in showing that root p–v curve traits are 
important to whole-plant drought responses. These traits were 
significantly different across grape rootstocks, and adjusted 
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to significantly lower values, which are expected to maintain 
greater root turgor and volume, under water stress (Figs 1 and 
2; Supplementary data Fig. S3). Lower root capacitance, which 

indicates that roots retain greater volume as water potentials de-
cline, was significantly associated with greater gas exchange in 
the water-stressed plants (Figs 3 and 4). However, the rootstocks 
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50 60 70 80 90

0

0.5

1.0

1.5

2.0

R
oo

t a
re

a 
(m

2 )

C
an

op
y 

ar
ea

 (
m

2 )

50 60 70 80 90

0.05

0

0.10

0.20

0.15

0.25A B

RWCtlp (%) RWCtlp (%)

Fig. 6.  Examples of the relationships between root p–v curve traits (here, relative water content at turgor loss point; RWCtlp) and plant size, measured as canopy 
surface area (A) and root system area (B) at the end of the experimental period. Symbols follow Fig. 3. n = 5–11 roots for the p–v traits, 7–8 plants for canopy 
area and 4–5 plants for root system area. Water stress significantly reduced both canopy and root area, while only root area was related to the root p–v traits. All 
of the root traits significantly improved prediction for root area, but rootstock variety was a stronger predictor than any individual trait, suggesting that rootstock 

differences in root system size are mainly driven by other factors (Table 3).

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article/doi/10.1093/aob/m

cab132/6404667 by Serials R
ecords Section,  m

kbartlett@
ucdavis.edu on 22 N

ovem
ber 2021

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcab132#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcab132#supplementary-data
http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcab132#supplementary-data


Bartlett et al. — Root water relations and drought tolerance10

that previous field trials classified as drought tolerant, based on 
canopy growth in dry conditions, exhibited significantly lower 
trait values in well-watered, but not water-stressed, conditions, 
contrary to expectation (Fig. 8). Altogether, these findings show 
that root p–v traits are important to gas exchange and water up-
take from dry soil and suggest that maintaining root turgor and 
volume also contributes to drought tolerance in field conditions, 
potentially by enabling greater water uptake from deeper, wetter 
soil. Therefore, characterizing these traits is a promising ap-
proach to capture diversity in below-ground drought tolerance.

Biophysical interpretations and mechanistic drivers of the root 
p–v traits

Pressure–volume analyses were developed for leaves, and 
two main structural differences could change the physiological 
interpretations of the p–v curve traits in roots.

First, the root traits, measured here on 15–20 cm sections, 
represent the composite properties of tissues from several de-
velopmental zones, including the tip, maturation zone and 

beginning of the secondary growth zone (Gambetta et al., 2013). 
Organ trait values are assumed to represent a weighted average 
of tissue traits, but modelling the effects of tissue heterogeneity 
indicates that turgor loss from the most vulnerable tissues can 
generate curve inflection points, which are used to graphically 
define πtlp and RWCtlp, even though turgor is still positive in 
the less vulnerable tissues (Cheung et al., 1976; Tyree, 1981). 
Thus, the root trait values could over-represent the properties 
of vulnerable cell types, such as root hairs. Further, measuring 
roots from similar developmental stages, with largely consistent 
proportions of primary (white, unsuberized) and secondary 
(woody) tissue, could be important to compare traits across cul-
tivars or species, if these traits vary across root zones. We did 
not measure the proportion of these zones in the sampled roots, 
but we visually estimated that about a third of the root length 
was unsuberized, consistently across rootstocks. Future work 
evaluating how p–v traits vary across zones could make root 
trait values more readily comparable across sites or studies by 
allowing values to be corrected by the proportion of root zones.

Second, in leaves, the curves are assumed to capture the 
properties of intact, dehydrating cells, while lacunae formation 
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duced plant water potentials and hydraulic conductance, but these variables were not associated with the root traits (Supplementary data Table S2).

Table 3.  The best-fit models predicting plant size, measured as root system and canopy biomass and area at the end of the experimental 
period

Trait a b c d Mar. r2 Cond. r2 ΔAICc

Root biomass Variety 0.09 * –0.03  0.49 0.94 –19.4
 RWCtlp 0.16 –0.001 –0.1 0.001 0.36 0.92 –4.4
Root area Variety 1.6 * –0.67 * 0.89 0.98 –296.8
 RWCtlp 3.2 –0.03 –0.21  0.33 0.92 –114.8
 Ctlp 1.0 –0.38 –0.95 1.3 0.32 0.92 –88.9
 Cft 0.79 0.003 –1.2 3.1 0.18 0.90 –88.3
 πtlp 0.42 –0.92 –0.62  0.14 0.89 –87.3
 πo 0.54 –0.99 –0.56  0.12 0.89 –81.9
Canopy biomass – 0.05  –0.01  0.16 0.90 0
Canopy area – 0.19  –0.05  0.38 0.92 0

The best-fit model for each trait was identified from all possible sub-sets of the model a + b × Trait + c × Treatment + d × Treatment × Trait. Fitted parameters 
are shown for the best-fit model for each trait that improved predictions for plant size, defined as an ΔAICc < –2, compared with the best-fit model without trait 
predictors. None of the trait variables substantively improved predictions for canopy size (indicated with ‘–’ in the Trait variable column). Other symbols follow 
Table 2.
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suggests curves for roots could also reflect relationships be-
tween Ψ and the volume of water released by cell implosion 
and rupture (Cheung et al., 1975; Cuneo et al., 2016, 2021). 
In 140-Ru, the πtlp in well-watered vines occurred within 
the range of water potentials initiating lacunae formation 
(πtlp = –0.45 MPa, while lacunae occupied 0 % of root area at 
–0.3 MPa and 12 % at –0.6 MPa) (Cuneo et al., 2016) (Fig. 2). 
We compare previous findings with well-watered trait values 
when plants are subjected to short droughts (<1 week), since 
root πo typically requires at least a week to adjust to new con-
ditions (Düring, 1984). Thus, root πtlp could measure Ψ at 
which the p–v relationship transitions from measuring water 
loss from intact cells to lacunae formation. The lack of signifi-
cant lacunae formation prior to πtlp suggests that Cft measures 
water loss from intact cells in both organs, but approx. 30 % 
of the root cortex developed lacunae by –1.2 MPa, suggesting 
the water released by cell implosion could be important to 
root Ctlp (Cuneo et al., 2016).

Clarifying the biophysical interpretation of these traits, and 
identifying the drivers of trait diversity and adjustment, would 
provide crucial insight into the mechanisms that confer below-
ground drought tolerance. The drivers of cell implosion are 
largely unknown, while wall stiffness is the main biochemical 
and structural driver of Cft in leaves, with stiffer walls reducing 

capacitance by restricting changes in cell volume (Bartlett 
et al., 2012b; Nadal et al., 2018). Cell wall thickness and chem-
ical composition are closely related to stiffness, suggesting 
that wall structure and chemistry could drive variation in Cft 
(Moore et al., 2008; Peguero-Pina et al., 2017). Many species 
increase cell wall thickness in their leaves under water stress 
(Cutler et al., 1977), while grape leaves subjected to cold stress 
reduced their cell wall pectin content, which increased wall 
stiffness and reduced Cft (Roig-Oliver et al., 2020). Grape root-
stocks vary in suberin deposition in the cell walls in the mat-
uration and secondary growth zones under water stress, but Cft 
was not significantly different between varieties that exhibited 
greater (101-14) or less suberization (110R) (Barrios-Masias 
et al., 2015). Other crop species have been shown to alter poly-
saccharide composition in the root cell walls during drought 
(Piro et  al., 2003). Also, trait adjustment in water-stressed 
plants could reflect biophysical differences between the tis-
sues developed under wet and dry conditions, or differences 
between previously unstressed tissues, without lacunae, and 
tissues composed of only the cells that remain after the vulner-
able cells have imploded. Further work is needed to determine 
how lacunae formation and cell structure and biochemistry 
in different developmental zones impact diversity and adjust-
ment in these traits; however, regardless, this study shows that 
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Fig. 8.  Trait differences between the rootstocks that field trials have classified as drought tolerant (DT) (140Ru, 1103P, 110R and Ramsey) and drought sensitive 
(DS) (420A, 5C, Riparia Gloire and 101-14). Drought tolerance is defined here as a greater ability to maintain canopy growth (scion vigor) under deficit irriga-
tion in vineyard conditions. Blue bars show the mean trait values for well-watered plants and grey bars show mean values for water-stressed plants. Error bars are 
standard errors. n = 24–30 roots. Asterisks indicate significant differences. The drought-tolerant rootstocks exhibited a significantly lower πtlp, πo, Cft and Ctlp under 
well-watered conditions, but Cft and Ctlp were not significantly different between drought-tolerant and drought-sensitive varieties under water stress, while πtlp and 

πo were significantly less negative in the tolerant rootstocks under water stress, contrary to our expectations (A–D).
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these traits hold promise for characterizing rootstock drought 
tolerance.

Potential mechanisms relating root capacitance to gas exchange 
during drought

Several mechanisms could drive the association between 
lower root capacitance and greater gas exchange under water 
stress. First, the rootstocks with a lower capacitance could 
maintain greater hydraulic function. Cell shrinkage in the root 
maturation zone under water stress would reduce the contact 
between roots and soil and, thus, the hydraulic conductance at 
the soil–root interface, while lacunae formation would reduce 
the hydraulic conductance across the root cortex (North and 
Nobel, 1997; Carminati et al., 2009; Cuneo et al., 2016). Since 
capacitance measures the decline in root volume with water po-
tential, a lower capacitance could indicate that the roots retain 
more volume in the maturation zone, via less cell shrinkage 
or lacunae formation, and thus maintain greater contact with 
the soil, hydraulic conductance and water transport. However, 
capacitance was not correlated with Kplant or KRA (Fig. 7), and 
a short dry-down produced stronger declines in root hydraulic 
conductivity in 110R than in 101-14 (Cuneo et  al., 2021), 
which exhibited similar capacitance values in well-watered 
plants (Fig. 1; Supplementary data Fig. S3).

Alternatively, capacitance could impact gas exchange 
through root to shoot signalling. Grape rootstocks vary in 
ABA content under water stress, and root ABA content was 
correlated with stomatal closure during drought across mul-
tiple rootstocks grafted to the same scion variety (Soar et al., 
2006; Speirs et al., 2013; Rossdeutsch et al., 2016). In maize, 
cells in all root zones generated ABA under drought, and ABA 
production was proportional to the percentage decline in root 
volume (Zhang and Tardieu, 1996). These findings suggest that 
the rootstocks with a lower capacitance could maintain greater 
gas exchange under water stress through smaller declines in 
root volume and less ABA production. Notably, Rossdeutsch 
et  al. (2016). measured ABA production during drought for 
four rootstocks from this study, and Riparia and 140-Ru ex-
hibited both significantly higher root ABA concentrations and 
Cft values than 101-14 and 110R (Fig. 2) However, contrary 
to this hypothesis, work in other species suggests that stomata 
mainly respond to leaf ABA production (McAdam et al., 2016), 
while root ABA content is more strongly determined by basip-
etal transport than endogenous root production (Manzi et al., 
2015). ABA is also not strongly upregulated in grape leaves 
until the stomata are mostly closed, which would not produce 
the moderate declines in gs observed here (Tombesi et al., 2015; 
Rodriguez-Dominguez et al., 2016; Gambetta et al., 2020) (Fig. 
3; Supplementary data Fig. S4).

Finally, root capacitance could be related to gas exchange 
through effects on water storage dynamics in the secondary 
growth zone. However, a higher capacitance would be expected 
to increase gas exchange, since storage tissues with a larger 
capacitance would release more water as plant water poten-
tials decline, increasing the water available for gas exchange 
(Meinzer et al., 2004; Bartlett et al., 2019; Strock and Lynch, 
2020). Our findings showing the opposite suggest that other 

mechanisms drive this relationship. Further work is needed to 
evaluate potential mechanisms by determining the impacts of 
p–v traits on root hydraulics and signalling.

Potential mechanisms linking root p–v traits to drought tolerance 
in field conditions

Adjusting to a lower capacitance increased water uptake 
from dry soil in this greenhouse experiment, but the trait dif-
ferences between rootstocks classified as drought tolerant or 
sensitive by field trials suggest that these traits contribute to 
drought tolerance in the field by increasing water depletion 
from wetter soil zones. Grapevines are deeply rooted, with >25 
% of root biomass typically distributed below 1 m, and thus 
experience wet conditions in deep soil and recurring cycles of 
drought and irrigation at the surface at the same time (Araujo 
et al., 1995; Smart et al., 2006). The trait differences between 
tolerant and sensitive rootstocks (Fig. 8) suggest that the tol-
erant rootstocks would exhibit a lower πtlp, πo, Cft and Ctlp in 
the roots in wetter and deeper soil, and a higher πtlp and πo 
in the droughted roots at the surface. Thus, tolerant rootstocks 
could maintain greater turgor and volume in deeper roots but 
lose more turgor from surface roots, as the roots deplete the 
surrounding soil to more negative water potentials. These trait 
values could improve hydraulic function and facilitate growth 
in deeper roots for the tolerant rootstocks (Frensch and Hsiao, 
1994; Gambetta et al., 2012). Drought-tolerant rootstocks ex-
hibit more root growth in wet soil, including deeper soil layers 
and re-irrigated soil following drought (Alsina et  al., 2011; 
Fort et  al., 2017; Cuneo et  al., 2021), and lower p–v curve 
trait values were significantly associated with a larger root area 
(Table 3; Fig. 6). Further, counterintuitively, limiting osmotic 
adjustment in dry surface roots could contribute to tolerance by 
concentrating resources on deep root proliferation. Osmotic ad-
justment would strengthen the water potential gradient driving 
hydraulic redistribution from hydrated to droughted roots, 
which has been shown to reduce mortality for grape roots in dry 
soil (Smart et al., 2005; Bauerle et al., 2008b). Root respiration 
is a significant carbon cost for grapevines, accounting for up to 
40 % of photosynthesis (Escalona et al., 2012). Thus, limiting 
adjustment could facilitate deep root proliferation and increase 
access to soil water by reducing carbon allocation to dry sur-
face roots. Future work is needed to determine whether p–v 
curve traits contribute to rootstock differences in root growth 
and distribution.

Conclusions

These findings are the first to show that root p–v curve traits 
are important to plant drought tolerance. The rootstocks with 
a lower capacitance maintained greater gas exchange under 
water stress, suggesting that adjustment in root structure and 
biochemistry to retain greater root volume could improve 
below-ground hydraulic function under drought. However, the 
trait values measured for well-watered plants could be more 
important for drought tolerance in field conditions, where 
grapevines can use deep rooting to access wet soil, despite dry 
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conditions at the surface. These measurements are currently 
limited to roots with the mechanical strength to resist damage 
from the pressure bomb, which probably excludes herbaceous 
species. However, demonstrating that these traits are important 
to drought tolerance incentivizes future work to develop more 
versatile alternative methods, as for leaf p–v traits (e.g. Bartlett 
et al., 2012a). Overall, these findings show that root p–v curve 
traits are a potentially powerful approach to characterize below-
ground drought tolerance for diverse plants and provide pheno-
typic targets to improve crop drought tolerance.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Table S1: the 
best-fit models predicting the recovery in transpiration after 
re-watering. Table S2: the best-fit models predicting the pre-
dawn and midday water potentials, whole-plant hydraulic con-
ductance, and conductance normalized by root area. Figure S1: 
pot water contents over the course of the experimental period 
for each of the eight rootstock varieties. Figure S2: whole-plant 
transpiration over the course of the experiment for each root-
stock. Figure S3: root pressure–volume curves for each of the 
eight rootstocks. Figure S4: midday stomatal conductance over 
the course of the experiment for each of the eight rootstocks. 
Figure S5: midday photosynthesis over the course of the ex-
periment for each of the eight rootstocks. Figure S6: midday 
leaf water potential over the course of the experiment for each 
of the eight rootstocks. Figure S7: correlations between the 
whole-plant transpiration rates before and after re-watering to 
saturation.
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